Examples for

Special functions refer to mathematical functions having particular usage in the study of analysis, physics, or another branch of science or mathematics. Typically, they come with their own conventional names and notations. Wolfram|Alpha has the ability to handle many families of special functions due to the powerful built-in functionalities of the Wolfram Language.

Compute properties for Bessel and Bessel-related functions.

Compute properties for elliptic functions and other related functions.

Compute properties for Legendre polynomials of the first and the second kind.

Compute properties for the Euler beta or incomplete beta function.

Compute properties for the error function and complementary error function.

Compute properties for spheroidal functions of the first and the second kind.

Compute properties for gamma and gamma-related functions.

Compute properties for the family of zeta functions.