Objectives

Students will be able to:
• Visualize a transformation to a function.
• Relate an original function \(f(x) \) to its transformed function.
• Compare function transformations.
• Sketch the graph of a given function.
• Orally explain what a given transformation does to a function.

Warm-Up

What is the difference between the graphs of \(x^2 \), \((3x)^2 \), and \(3x^2 \)? Use W|A to investigate.
Lesson

• Split students into small groups. The goal is to find how a, b, c, and d change the original graph of $f(x)$ when $y = a f((x - b) / c)) + d$. Give students access to Wolfram|Alpha and have them research the following functions:
 ◊ $\cos(x)$
 ◊ $\cos(10 + x)$
 ◊ $\cos(x) + 10$
 ◊ $10 \cos(x)$
 ◊ $\cos(10 \cdot x)$
Input:

\{\cos(x), \cos(x + 10), \cos(x) + 10, 10 \cos(x), \cos(10x)\}

Property:

Periodic in \(x\) with period \(2\pi\)

Total:

\[\cos(x) + \cos(10 + x) + (10 + \cos(x)) + 10 \cos(x) + \cos(10x) =\]
\[12 \cos(x) + \cos(10x) + \cos(x + 10) + 10\]

Mean value:

\[\frac{1}{5} \left(12 \cos(x) + \cos(10x) + \cos(x + 10) + 10\right)\]
Math: Algebra II Translations and Scale Changes

\[
\cos(x), \cos(x) + 10
\]

- \(x^2 + 5\)
- \((x + 3)^2 + 5\)
- \((x^2 + 5) + 3\)
- \(3(x^2 + 5)\)
- \((3x)^2 + 5\)
Math: Algebra II Translations and Scale Changes

Input:
\[\{ x^2 + 5, (x + 3)^2 + 5, (x^2 + 5) + 3, 3(x^2 + 5), (3x)^2 + 5 \} \]

Result:
\[\{ x^2 + 5, (x + 3)^2 + 5, x^2 + 8, 3(x^2 + 5), 9x^2 + 5 \} \]

Plots:

(x from -2 to 1)
- \(x^2 + 5 \)
- \((x - 3)^2 + 5 \)
- \(x^2 + 8 \)
- \(3(x^2 + 5) \)
- \(9x^2 + 5 \)

(x from -10 to 10)
- \(x^2 + 5 \)
- \((x - 3)^2 + 5 \)
- \(x^2 + 8 \)
- \(3(x^2 + 5) \)
- \(9x^2 + 5 \)

Total:
\[
(5 + x^2) + (5 + (3 + x)^2) + (8 + x^2) + 3(5 + x^2) + (5 - 9x^2) = 11x^2 + 3(x^2 + 5) + (x + 3)^2 + 23
\]

Mean value:
\[
\frac{1}{5} \left(11x^2 + 3(x^2 + 5) + (x + 3)^2 + 23 \right)
\]
$x^2 + 5, 3(x^2 + 5)$

Plots:

- For x from -2 to 2:
 - $x^2 + 5$
 - $3(x^2 + 5)$

- For x from -4 to 4:
 - $x^2 + 5$
 - $3(x^2 + 5)$

- 2^x
- $4(2^x)$
- 2^4x
- $2^{(x+4)}$
- $2^x + 4$
Input:
\[\{2^x, 4 \times 2^x, 2^4x, 2^{x+4}, 2^x + 4\}\]

Result:
\[\{2^x, 2^{x+2}, 2^4x, 2^{x+4}, 2^x + 4\}\]
Note: Students can also use different numbers to investigate the change in the graph.
• Have students come up with a list of proposed suggestions for what a, b, c, and d do to the original graph of $f(x)$. Take turns calling on different groups for each variable.
• After each group has contributed, go through what transformations are associated with a, b, c, and d.
• What happens when $x \rightarrow -x$ or $y \rightarrow -y$?
Closing

Let students choose their own function and apply two of the four transformations, where \(a = 3 \), \(b = 5 \), \(c = 2 \), and \(d = 8 \). Plot the original function as well as the transformed function and explain the transformations.

• \(f(x) = x^4, \ a = 3, \ d = 8 \)
 New function: \(g(x) = 3x^4 + 8 \)

Demonstrations

Function Transformations