Objectives

Students will be able to:
• Relate the real roots of a polynomial to the x-intercepts of its graph.
• Graph simple polynomials of degree three and higher.
• Determine possible equations for polynomials of higher degree from their graphs.

Warm-Up

Ask students to sketch graphs of the functions $y = (x - 2)(x + 2)$, $y = (x - 2)^2$, and $y = (x - 2)^3$. Check the graphs with W|A.
Lesson

- Point out to students that each binomial factor of a polynomial generates a root and that each of these roots is equal to an \(x \)-intercept of the graph of the polynomial. Ask them to predict the \(x \)-intercepts of the equation \(y = x^2(x - 5)(x + 5) \) and to check their answers with W|A.
• Explain that the degree of a polynomial and the sign of its leading coefficient affect the general behavior of its graph at increasingly large absolute values of x. Illustrate the reflectional and rotational symmetries of even and odd functions respectively with several W|A examples.

• Point out to students that wherever the absolute value of x is large, the numbers in the binomials become insignificant and the polynomial can be approximated by the leading term $a x^n$. For example, $(x + 3)(x - 1)^3(x - 10)$ becomes close to x^5 at large absolute values of x.
Math: Algebra II Graphing Polynomials of Higher Degree

\[y = (x+3)(x-1)^3(x-10) \]

Alternate forms:
\[y = x^5 - 10x^4 - 6x^3 + 68x^2 - 83x + 30 \]
\[y = x^5 - 7x(x-1)^3 - 30(x-1)^3 \]

\[y = x^5 \]

\[(x+3)(x-1)^3(x-10), x^5 \text{ from } -100 \text{ to } 100 \]
• Explain to students that the degree of a binomial factor in a polynomial determines the behavior of its graph at the \textit{x}-intercept associated with that binomial factor. Return to the first example, \(y = x^2(x - 5)(x + 5) \), and use \texttt{W|A} to illustrate the effects of raising a binomial factor to successively higher powers.
Closing

Use W|A to create a graph of the equation \(y = x(x + 10)(x + 5)(x - 5)^2(x - 10) \) and ask students to derive a possible equation for the polynomial based on the graph and what students have learned during class.

![Graph of the equation](image)

Demonstrations

- Polynomial Roots
- End Behavior of Polynomial Functions
- Local Behavior of a Polynomial Near a Root
- Where Are My Roots?
- Parameters for Plotting a Cubic Polynomial
- Polynomial Graph Generator