simple cubic, simple hexagonal - Wolfram|Alpha

x


Image InputX

Upload an image from your computer:
Enter a URL for an image:
 

File UploadX

Upload a file from your computer:
Enter a URL for a file:
 


Copy & paste as input »Terms | Privacy

All files »Recent files
Loading
Supported formats and sample files

Input interpretation:

    link to /input/?i=simple+cubic&lk=1&a=ClashPrefs_*Lattice.SimpleCubic-link to /input/?i=simple+cubic&lk=1&a=ClashPrefs_*Lattice.SimpleCubic-link to /input/?i=simple+hexagonal&lk=1&a=ClashPrefs_*Lattice.SimpleHexagonal-link to /input/?i=simple+hexagonal&lk=1&a=ClashPrefs_*Lattice.SimpleHexagonal-
    EnlargeEnable InteractivityDownload as CDF
    Save as image »Copyable plaintext »Mathematica form »

    Common names:

    Simple cubic:

    EnlargeEnable InteractivityDownload as CDF

    Descriptions of lattice:

    link to /input/?i=simple+cubic&lk=1&a=ClashPrefs_*Lattice.SimpleCubic-link to /input/?i=simple+cubic&lk=1&a=ClashPrefs_*Lattice.SimpleCubic-link to /input/?i=simple+hexagonal&lk=1&a=ClashPrefs_*Lattice.SimpleHexagonal-link to /input/?i=simple+hexagonal&lk=1&a=ClashPrefs_*Lattice.SimpleHexagonal-link to /input/?i=simple+cubic%2C+simple+hexagonal+basis&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.Basis-link to /input/?i=simple+cubic%2C+simple+hexagonal+Gram+matrix&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.GramMatrix-link to /input/?i=simple+cubic%2C+simple+hexagonal+Gram+matrix&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.GramMatrix-
    EnlargeEnable InteractivityDownload as CDF

    Lattice-packing invariants:

    link to /input/?i=simple+cubic&lk=1&a=ClashPrefs_*Lattice.SimpleCubic-link to /input/?i=simple+cubic&lk=1&a=ClashPrefs_*Lattice.SimpleCubic-link to /input/?i=simple+hexagonal&lk=1&a=ClashPrefs_*Lattice.SimpleHexagonal-link to /input/?i=simple+hexagonal&lk=1&a=ClashPrefs_*Lattice.SimpleHexagonal-link to /input/?i=simple+cubic%2C+simple+hexagonal+packing+radius&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.PackingRadius-link to /input/?i=simple+cubic%2C+simple+hexagonal+packing+radius&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.PackingRadius-link to /input/?i=simple+cubic%2C+simple+hexagonal+covering+radius&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.CoveringRadius-link to /input/?i=simple+cubic%2C+simple+hexagonal+covering+radius&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.CoveringRadius-link to /input/?i=simple+cubic%2C+simple+hexagonal+density&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.Density-link to /input/?i=simple+cubic%2C+simple+hexagonal+center+density&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.CenterDensity-link to /input/?i=simple+cubic%2C+simple+hexagonal+center+density&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.CenterDensity-link to /input/?i=simple+cubic%2C+simple+hexagonal+Hermite+invariant&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.HermiteInvariant-link to /input/?i=simple+cubic%2C+simple+hexagonal+Hermite+invariant&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.HermiteInvariant-link to /input/?i=simple+cubic%2C+simple+hexagonal+thickness&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.Thickness-link to /input/?i=simple+cubic%2C+simple+hexagonal+volume&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.Volume-
    EnlargeEnable InteractivityDownload as CDF

    Quadratic form and theta series:

    link to /input/?i=simple+cubic&lk=1&a=ClashPrefs_*Lattice.SimpleCubic-link to /input/?i=simple+cubic&lk=1&a=ClashPrefs_*Lattice.SimpleCubic-link to /input/?i=simple+hexagonal&lk=1&a=ClashPrefs_*Lattice.SimpleHexagonal-link to /input/?i=simple+hexagonal&lk=1&a=ClashPrefs_*Lattice.SimpleHexagonal-link to /input/?i=simple+cubic%2C+simple+hexagonal+quadratic+form&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.QuadraticForm-link to /input/?i=simple+cubic%2C+simple+hexagonal+quadratic+form&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.QuadraticForm-link to /input/?i=x%5E2%2By%5E2%2Bz%5E2&lk=1&a=ClashPrefs_*Math-link to /input/?i=x%5E2%2B2+y%5E2%2B2+y+z%2B2+z%5E2&lk=1&a=ClashPrefs_*Math-link to /input/?i=simple+cubic%2C+simple+hexagonal+theta+series&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.ThetaSeriesFunction-link to /input/?i=EllipticTheta%283%2C+0%2C+e%5E%28i+%CF%80+x%29%29%5E3&lk=1&a=ClashPrefs_*Math-
    EnlargeEnable InteractivityDownload as CDF

    More properties:

    link to /input/?i=simple+cubic&lk=1&a=ClashPrefs_*Lattice.SimpleCubic-link to /input/?i=simple+cubic&lk=1&a=ClashPrefs_*Lattice.SimpleCubic-link to /input/?i=simple+hexagonal&lk=1&a=ClashPrefs_*Lattice.SimpleHexagonal-link to /input/?i=simple+hexagonal&lk=1&a=ClashPrefs_*Lattice.SimpleHexagonal-link to /input/?i=simple+cubic%2C+simple+hexagonal+dual&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.Dual-link to /input/?i=3%E2%80%90dimensional+integer+lattice&lk=1link to /input/?i=3%E2%80%90dimensional+integer+lattice&lk=1link to /input/?i=3%E2%80%90dimensional+integer+lattice&lk=1link to /input/?i=3%E2%80%90dimensional+integer+lattice&lk=1link to /input/?i=simple+cubic%2C+simple+hexagonal+modular+number&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.ModularNumber-link to /input/?i=simple+cubic%2C+simple+hexagonal+modular+number&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.ModularNumber-link to /input/?i=simple+cubic%2C+simple+hexagonal+number+of+symmetries&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.AutomorphismGroupOrder-link to /input/?i=simple+cubic%2C+simple+hexagonal+number+of+symmetries&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.AutomorphismGroupOrder-link to /input/?i=simple+cubic%2C+simple+hexagonal+number+of+symmetries&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.AutomorphismGroupOrder-
    EnlargeEnable InteractivityDownload as CDF

    Common properties:

    EnlargeEnable InteractivityDownload as CDF

    Crystallographic properties:

    link to /input/?i=simple+cubic&lk=1&a=ClashPrefs_*Lattice.SimpleCubic-link to /input/?i=simple+cubic&lk=1&a=ClashPrefs_*Lattice.SimpleCubic-link to /input/?i=simple+hexagonal&lk=1&a=ClashPrefs_*Lattice.SimpleHexagonal-link to /input/?i=simple+hexagonal&lk=1&a=ClashPrefs_*Lattice.SimpleHexagonal-link to /input/?i=simple+cubic%2C+simple+hexagonal+lattice+system&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.LatticeSystem-link to /input/?i=simple+cubic%2C+simple+hexagonal+lattice+system&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.LatticeSystem-link to /input/?i=cubic&lk=1&a=ClashPrefs_*LatticeSystem.Cubic-link to /input/?i=hexagonal&lk=1&a=ClashPrefs_*LatticeSystem.Hexagonal-link to /input/?i=simple+cubic%2C+simple+hexagonal+crystal+system&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.CrystalSystem-link to /input/?i=simple+cubic%2C+simple+hexagonal+crystal+system&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.CrystalSystem-link to /input/?i=cubic&lk=1&a=ClashPrefs_*CrystalSystem.Cubic-link to /input/?i=trigonal&lk=1&a=ClashPrefs_*CrystalSystem.Trigonal-link to /input/?i=hexagonal&lk=1&a=ClashPrefs_*CrystalSystem.Hexagonal-link to /input/?i=simple+cubic%2C+simple+hexagonal+crystal+families&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.CrystalFamily-link to /input/?i=simple+cubic%2C+simple+hexagonal+crystal+families&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.CrystalFamily-link to /input/?i=cubic&lk=1&a=ClashPrefs_*CrystalFamily.Cubic-link to /input/?i=hexagonal&lk=1&a=ClashPrefs_*CrystalFamily.Hexagonal-link to /input/?i=simple+cubic%2C+simple+hexagonal+required+point+group+symmetries&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.RequiredPointGroupSymmetries-link to /input/?i=simple+cubic%2C+simple+hexagonal+required+point+group+symmetries&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.RequiredPointGroupSymmetries-link to /input/?i=simple+cubic%2C+simple+hexagonal+required+point+group+symmetries&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.RequiredPointGroupSymmetries-link to /input/?i=simple+cubic%2C+simple+hexagonal+required+point+group+symmetries&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.RequiredPointGroupSymmetries-link to /input/?i=simple+cubic%2C+simple+hexagonal+point+groups&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.CrystallographicPointGroupCount-link to /input/?i=simple+cubic%2C+simple+hexagonal+point+groups&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.CrystallographicPointGroupCount-link to /input/?i=simple+cubic%2C+simple+hexagonal+space+groups&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.CrystallographicSpaceGroupCount-link to /input/?i=simple+cubic%2C+simple+hexagonal+space+groups&lk=1&a=ClashPrefs_*Lattice.SimpleCubic.Lattice.SimpleHexagonal.LatticeProperty.CrystallographicSpaceGroupCount-
    EnlargeEnable InteractivityDownload as CDF

    Download full output as:

    CDF  PDF
    To open this file you need the FREE Wolfram CDF Player or Mathematica 8
    Download Wolfram CDF Player Continue downloading file
    Give us your feedback:
     
    x

    Output Zoom

    Zoom in to see an enlarged view of any output.

    Subscribe to Pro
    Learn about all Pro features »
    X

    Edit this favorite


     
    AdvertisementAvoid ads Upgrade to Wolfram|Alpha Pro »
    x

    CDF Interactivity

    Bring Wolfram|Alpha output to life with CDF interactivity.

    Subscribe to Pro
    Learn about all Pro features »