What is a unitary matrix? - Wolfram|Alpha

x


Image InputX

Upload an image from your computer:
Enter a URL for an image:
 

File UploadX

Upload a file from your computer:
Enter a URL for a file:
 


Copy & paste as input »Terms | Privacy

All files »Recent files
Loading
Supported formats and sample files

Input interpretation:

link to /input/?i=unitary+matrix&lk=1&a=ClashPrefs_*MathWorld.UnitaryMatrix-link to /input/?i=unitary+matrix&lk=1&a=ClashPrefs_*MathWorld.UnitaryMatrix-
EnlargeEnable InteractivityDownload as CDF

Definition:

EnlargeEnable InteractivityDownload as CDF

Related topics:

link to /input/?i=antihermitian+matrix&lk=1&a=ClashPrefs_*MathWorld.AntihermitianMatrix-link to /input/?i=antihermitian+matrix&lk=1&a=ClashPrefs_*MathWorld.AntihermitianMatrix-link to /input/?i=Clifford+algebra&lk=1&a=ClashPrefs_*MathWorld.CliffordAlgebra-link to /input/?i=Clifford+algebra&lk=1&a=ClashPrefs_*MathWorld.CliffordAlgebra-link to /input/?i=conjugate+transpose&lk=1&a=ClashPrefs_*MathWorld.ConjugateTranspose-link to /input/?i=conjugate+transpose&lk=1&a=ClashPrefs_*MathWorld.ConjugateTranspose-link to /input/?i=group+representation&lk=1&a=ClashPrefs_*MathWorld.GroupRepresentation-link to /input/?i=group+representation&lk=1&a=ClashPrefs_*MathWorld.GroupRepresentation-link to /input/?i=Hermitian+inner+product&lk=1&a=ClashPrefs_*MathWorld.HermitianInnerProduct-link to /input/?i=Hermitian+inner+product&lk=1&a=ClashPrefs_*MathWorld.HermitianInnerProduct-link to /input/?i=Hermitian+inner+product&lk=1&a=ClashPrefs_*MathWorld.HermitianInnerProduct-link to /input/?i=Hermitian+matrix&lk=1&a=ClashPrefs_*MathWorld.HermitianMatrix-link to /input/?i=Hermitian+matrix&lk=1&a=ClashPrefs_*MathWorld.HermitianMatrix-link to /input/?i=normal+matrix&lk=1&a=ClashPrefs_*MathWorld.NormalMatrix-link to /input/?i=normal+matrix&lk=1&a=ClashPrefs_*MathWorld.NormalMatrix-link to /input/?i=orthogonal+group&lk=1&a=ClashPrefs_*MathWorld.OrthogonalGroup-link to /input/?i=orthogonal+group&lk=1&a=ClashPrefs_*MathWorld.OrthogonalGroup-link to /input/?i=permanent&lk=1&a=ClashPrefs_*MathWorld.Permanent-link to /input/?i=special+unitary+matrix&lk=1&a=ClashPrefs_*MathWorld.SpecialUnitaryMatrix-link to /input/?i=special+unitary+matrix&lk=1&a=ClashPrefs_*MathWorld.SpecialUnitaryMatrix-link to /input/?i=special+unitary+matrix&lk=1&a=ClashPrefs_*MathWorld.SpecialUnitaryMatrix-link to /input/?i=symmetric+matrix&lk=1&a=ClashPrefs_*MathWorld.SymmetricMatrix-link to /input/?i=symmetric+matrix&lk=1&a=ClashPrefs_*MathWorld.SymmetricMatrix-link to /input/?i=unimodular+matrix&lk=1&a=ClashPrefs_*MathWorld.UnimodularMatrix-link to /input/?i=unimodular+matrix&lk=1&a=ClashPrefs_*MathWorld.UnimodularMatrix-link to /input/?i=unitary+group&lk=1&a=ClashPrefs_*MathWorld.UnitaryGroup-link to /input/?i=unitary+group&lk=1&a=ClashPrefs_*MathWorld.UnitaryGroup-link to /input/?i=unit+matrix&lk=1&a=ClashPrefs_*MathWorld.UnitMatrix-link to /input/?i=unit+matrix&lk=1&a=ClashPrefs_*MathWorld.UnitMatrix-
EnlargeEnable InteractivityDownload as CDF

Download full output as:

CDF  PDF
To open this file you need the FREE Wolfram CDF Player or Mathematica 8
Download Wolfram CDF Player Continue downloading file
Give us your feedback:
 
x

Output Zoom

Zoom in to see an enlarged view of any output.

Subscribe to Pro
Learn about all Pro features »
X

Edit this favorite


 
AdvertisementAvoid ads Upgrade to Wolfram|Alpha Pro »
x

CDF Interactivity

Bring Wolfram|Alpha output to life with CDF interactivity.

Subscribe to Pro
Learn about all Pro features »