(10,8) cage graph - Wolfram|Alpha

x

Image InputX

Upload an image from your computer:
Enter a URL for an image:
 

File UploadX

Upload a file from your computer:
Enter a URL for a file:
 


Copy & paste as input »Terms | Privacy

All files »Recent files
Loading
Supported formats and sample files

Input interpretation:

    link to /input/?i=%2810%2C8%29%E2%80%90cage&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage&lk=1
    EnlargeEnable InteractivityDownload as CDF
    Save as image »Copyable plaintext »Mathematica form »

    Basic properties:

    link to /input/?i=%2810%2C8%29%E2%80%90cage+vertex+count&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage+vertex+count&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage+edge+count&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage+edge+count&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage+number+of+connected+components&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage+number+of+connected+components&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage+number+of+connected+components&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage+number+of+connected+components&lk=1
    EnlargeEnable InteractivityDownload as CDF

    Graph features:

    link to /input/?i=asymmetric+graph&lk=1&a=ClashPrefs_*GraphClass.Asymmetric-link to /input/?i=bicolorable+graph&lk=1&a=ClashPrefs_*GraphClass.Bicolorable-link to /input/?i=biconnected+graph&lk=1&a=ClashPrefs_*GraphClass.Biconnected-link to /input/?i=bipartite+graph&lk=1&a=ClashPrefs_*GraphClass.Bipartite-link to /input/?i=bridgeless+graph&lk=1&a=ClashPrefs_*GraphClass.Bridgeless-link to /input/?i=cage+graph&lk=1&a=ClashPrefs_*GraphClass.Cage-link to /input/?i=class+1+graph&lk=1&a=ClashPrefs_*GraphClass.Class1-link to /input/?i=class+1+graph&lk=1&a=ClashPrefs_*GraphClass.Class1-link to /input/?i=connected+graph&lk=1&a=ClashPrefs_*GraphClass.Connected-link to /input/?i=cyclic+graph&lk=1&a=ClashPrefs_*GraphClass.Cyclic-link to /input/?i=distance%E2%80%90regular+graph&lk=1&a=ClashPrefs_*GraphClass.DistanceRegular-link to /input/?i=distance%E2%80%90regular+graph&lk=1&a=ClashPrefs_*GraphClass.DistanceRegular-link to /input/?i=edge%E2%80%90transitive+graph&lk=1&a=ClashPrefs_*GraphClass.EdgeTransitive-link to /input/?i=edge%E2%80%90transitive+graph&lk=1&a=ClashPrefs_*GraphClass.EdgeTransitive-link to /input/?i=Eulerian+graph&lk=1&a=ClashPrefs_*GraphClass.Eulerian-link to /input/?i=Hamiltonian+graph&lk=1&a=ClashPrefs_*GraphClass.Hamiltonian-link to /input/?i=Hamilton%E2%80%90laceable+graph&lk=1&a=ClashPrefs_*GraphClass.HamiltonLaceable-link to /input/?i=Hamilton%E2%80%90laceable+graph&lk=1&a=ClashPrefs_*GraphClass.HamiltonLaceable-link to /input/?i=local+graph&lk=1&a=ClashPrefs_*GraphClass.Local-link to /input/?i=Moore+graph&lk=1&a=ClashPrefs_*GraphClass.Moore-link to /input/?i=noncayley+graph&lk=1&a=ClashPrefs_*GraphClass.Noncayley-link to /input/?i=nonplanar+graph&lk=1&a=ClashPrefs_*GraphClass.Nonplanar-link to /input/?i=perfect+graph&lk=1&a=ClashPrefs_*GraphClass.Perfect-link to /input/?i=perfect+matching+graph&lk=1&a=ClashPrefs_*GraphClass.PerfectMatching-link to /input/?i=perfect+matching+graph&lk=1&a=ClashPrefs_*GraphClass.PerfectMatching-link to /input/?i=regular+graph&lk=1&a=ClashPrefs_*GraphClass.Regular-link to /input/?i=semisymmetric+graph&lk=1&a=ClashPrefs_*GraphClass.Semisymmetric-link to /input/?i=square%E2%80%90free+graph&lk=1&a=ClashPrefs_*GraphClass.SquareFree-link to /input/?i=square%E2%80%90free+graph&lk=1&a=ClashPrefs_*GraphClass.SquareFree-link to /input/?i=traceable+graph&lk=1&a=ClashPrefs_*GraphClass.Traceable-link to /input/?i=triangle%E2%80%90free+graph&lk=1&a=ClashPrefs_*GraphClass.TriangleFree-link to /input/?i=triangle%E2%80%90free+graph&lk=1&a=ClashPrefs_*GraphClass.TriangleFree-link to /input/?i=weakly+regular+graph&lk=1&a=ClashPrefs_*GraphClass.WeaklyRegular-link to /input/?i=weakly+regular+graph&lk=1&a=ClashPrefs_*GraphClass.WeaklyRegular-
    EnlargeEnable InteractivityDownload as CDF

    Vertex degrees:

    EnlargeEnable InteractivityDownload as CDF

    Topological properties:

    link to /input/?i=%2810%2C8%29%E2%80%90cage+radius&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage+diameter&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage+girth&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage+vertex+connectivity&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage+vertex+connectivity&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage+edge+connectivity&lk=1link to /input/?i=%2810%2C8%29%E2%80%90cage+edge+connectivity&lk=1
    EnlargeEnable InteractivityDownload as CDF

    Download full output as:

    CDF  PDF
    To open this file you need the FREE Wolfram CDF Player or Mathematica 8
    Download Wolfram CDF Player Continue downloading file
    Give us your feedback:
     
    x

    Output Zoom

    Zoom in to see an enlarged view of any output.

    Subscribe to Pro
    Learn about all Pro features »
    X

    Edit this favorite


     
    AdvertisementAvoid ads Upgrade to Wolfram|Alpha Pro »
    x

    CDF Interactivity

    Bring Wolfram|Alpha output to life with CDF interactivity.

    Subscribe to Pro
    Learn about all Pro features »